Friday (13-December-2024) — New Jersey

Silhouette of an AI Drone Hovering in front of the Moon.

Image of the moon taken with a Vespera Pro telescope. The moon is real, the silhouette is AI art.

Silhouettes of an Airplane, Jets, and a Turkey Vulture Transiting the Sun.

Today, I captured images of an airplane, two jets, and a Turkey Vulture transiting the sun while looking at the sunspots (we are at or near the solar maximum). I was viewing the sun with a Vespera Classic and Vespera Pro automated telescope using solar filters.

Silhouette of a Turkey Vulture passing in front of the sun. Image taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 1/4000 sec) with a solar filter.
Silhouette of a Turkey Vulture passing in front of the sun. Note I am guessing it is a Turkey Vulture. It could also be a Black Vulture. Image taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 1/4000 sec) with a solar filter.
Silhouette of an airplane passing in front of the sun. Image taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 1/4000 sec) with a solar filter.
Silhouette of an airplane passing in front of the sun. Image taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 1/4000 sec) with a solar filter.
Silhouette of a jet transiting the sun with sunspots. Image taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 1/4000 sec) with a solar filter.
Silhouette of a jet transiting the sun with sunspots. Image taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 1/4000 sec) with a solar filter.
Sun with sunspots and the silhouette of a jet. Image taken with a Vaonis Vespera Pro Telescope (250 mm, f/5, 1/4000 sec) with a solar filter.
Sun with sunspots and the silhouette of a jet. Image taken with a Vaonis Vespera Pro Telescope (250 mm, f/5, 1/4000 sec) with a solar filter.

Monday (18-November-2024) — New Jersey

Comet C/2023 A3 (Tsuchinshan–ATLAS)

The comet and tail keep getting smaller and fainter. The estimated magnitude of the comet was +8.5. I am only showing images from the Stellina telescope since the Vespera telescopes are fitted with filters for viewing emission nebulae.

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).

Singularity Multi-Night Observations

One of the new features with the Singularity software application used to operate the Vaonis telescopes is Multi-Night Observations. The mosaic image composite process is continued from the previous observation session to afford improved image quality. The software permits up to five different mosaic images to be continued for more than one night. At the end of each multi-night observation, the final image and the settings to continue the observation for the target is stored with the instrument as the starting point for the next multi-night observation. The settings include whether a filter is used (and would be required for subsequent multi-night observations). It is recommended that the object be between 25° and 75° during the multi-night observation.

Helix Nebula (NGC 7293)

The Helix Nebula is a planetary emission nebula located in the constellation Aquarius. It is relatively low (maximum about 28°) above the southern horizon early in the evening, so the first target for the night.

Stellina (no Filter)

Observation of the Helix Nebula (NGC 7293) over four nights using the Stellina telescope with no filter. The mosaic size for the observation was set to 1.1° x 1.1°. Total of 741 stacked images, 02h 03m 30s). I’ve included both an unprocessed jpg image and one that was processed (Capture One for brightness and contrast, Topaz AI to remove noise).

Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec). JPG image without additional processing.
Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec exposures). JPG image without additional processing.
Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec). Image processed with Topaz AI (noise reduction) and Capture One.
Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec exposures). Image processed with Topaz AI (noise reduction) and Capture One.
Vespera Classic with Dual Filter

Observation of the Helix Nebula (NGC 7293) over four nights using the Vespera Classic telescope with a Dual (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 1766 stacked images (04h 54m 20s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1765, 1766). The full 1.6° x 1.6° (1967 x 1936 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 6th pass when the observation was stopped for the night. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Compared with the processed image from the Stellina, this one is brighter due to the Dual filter and the larger number of stacked images.

Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4).  JPG image without additional processing
Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4). JPG image without additional processing

Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4).  Image processed with Topaz AI (noise) and Capture One.
Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4). Image processed with Topaz AI (noise) and Capture One.

Vespera Passengers with Dual Band Filter

Observation of the Helix Nebula (NGC 7293) over four nights using the Vespera Passengers telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 1199 stacked images (03h 19m 50s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1198, 1199). The full 1.6° x 1.6° (1956 x 1934 pixel) mosaic field was filled after 32 stacked images. The mosaic was in the 8th pass when the observation was paused. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise).

Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). JPG image without additional processing
Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). JPG image without additional processing

Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). Image processed with Capture One (brightness) and Topaz AI (noise reduction)
Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). Image processed with Capture One (brightness) and Topaz AI (noise reduction)

Vespera II with CLS Filter

Observation of the Helix Nebula (NGC 7293) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.5° x 2.6°. Total of 1446 stacked images (04h 01m 00s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1445, 1446). The full 2.5° x 2.6° (3791 x 3840 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 6th pass when the observation was paused. Even though there are more stacked images, the unprocessed jpg image from the Vespera-II telescope is not a bright as the ones from the Vespera Classic, or Vespera Passengers telescopes. This may be due to the different filters used (CLS vs Dual). The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise).

Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Unprocessed jpg image.
Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Unprocessed jpg image.

Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Image processed with Capture One (brightness) and Topaz AI (noise reduction)
Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Image processed with Capture One (brightness) and Topaz AI (noise reduction)

Dumbbell Nebula (M27)

The Dumbbell Nebula (M27, NGC 6853) is a planetary nebula in the constellation Vulpecula. Vespera Pro was not able to locate/lock onto the Helix nebula, so I selected the Dumbbell nebula as an alternative multi-night target. On this date, it remains above 25° above the horizon until about 22:00.

Vespera Pro with Dual Band Filter

Observation of the Dumbell Nebula (M27) over two nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 801 stacked images (02h 13m 30s). The slideshow shows the image improve (increased brightness and contrast as well as decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 800, 801). The full 1.6° x 1.6° (3559 x 3571 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 6th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed around the nebula.

Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Unprocessed jpg image.
Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Unprocessed jpg image.

Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).
Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).

Crescent Nebula (NGC 6888)

The Crescent Nebula (NGC 6888, Caldwell 27, Sharpless 105) is an emission nebula in the constellation Cygnus. On this date, it remains above 25° above the horizon until about 22:00. I selected this as my second deep sky object for multi-night target for the night.

Stellina (no Filter)

Observation of the Crescent Nebula (NGC 6888) over four nights using the Stellina telescope with no filter. The mosaic size for the observation was set to 1.1° x 1.1°. Total of 1624 stacked images, 04h 30m 40s). I’ve included both an unprocessed jpg image and one that was processed (Capture One for brightness and contrast, Topaz AI to remove noise). In this section of the sky there are lots of stars. Even with the processing, it is difficult to clearly see the faint red nebula.

Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Image processed with Topaz AI (noise reduction) and Capture One.
Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Image processed with Topaz AI (noise reduction) and Capture One.

Vespera Classic with Dual Band Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera Classic telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2236 stacked images (06h 12m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2235, 2226). The full 1.6° x 1.6° (1900 x 1924 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 7th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed above the nebula.

Crescent Nebula (NGC 6888). Composite of x stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 2336 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of x stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Image processed with Capture One (levels) and Topaz AI (noise reduction)
Crescent Nebula (NGC 6888). Composite of 2336 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Passengers with Dual Band Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera Passengers telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2016 stacked images (05h 36m 00s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2015, 2016). The full 1.6° x 1.6° (1949 x 1938 pixel) mosaic field was filled after 32 stacked images. The mosaic was in the 14th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed around the nebula.

Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise)
Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise)

Vespera II with CLS Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.5° x 2.6°. Total of 2168 stacked images (06h 01m 20s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2167, 2168). The full 2.5° x 2.6° (3694 x 3840 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 11th pass when the observation was paused. Even though there are more stacked images, the unprocessed jpg image from the Vespera-II telescope is not a bright as the ones from the Vespera Classic, or Vespera Passengers telescopes. This may be due to the different filters used (CLS vs Dual). The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Lots of stars in this region of the sky.

Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Processed with Capture One (levels) and Topaz AI (noise reduction).
Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Processed with Capture One (levels) and Topaz AI (noise reduction).

Vespera Pro with Dual Band Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2638 stacked images (07h 19m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2637, 2638). The full 1.6° x 1.6° (3559 x 3543 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 17th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed around the nebula.

Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Unprocessed JPG image.
Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Unprocessed JPG image.

Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)
Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)

Waning Gibbous Moon

The waning gibbous moon is 89% illuminated. For the remainder of the night the Stellina telescope recorded images of the moon that were used to create the following time-lapse video. I did a quick review of the images and didn’t see any object passing in front of the moon. Let me know if you see something. The telescope takes ~ 40 images/minute. The time-lapse video was created using Photoshop (720p, 30fps)

Packman Nebula (NGC 281)

The Packman Nebula (NGC 281, IC 11 or Sh2-184) is a bright emission nebula in the Cassiopea constellation and is part of the Milky Way.

Vespera Classic with Dual Band Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera Classic telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2534 stacked images (07h 02m 20s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2533, 2534). The full 1.6° x 1.6° (1924 x 1972 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 8th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Unprocessed jpg image.
Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Unprocessed jpg image.

Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)
Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Passengers with Dual Band Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera Passengers telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2373 stacked images (06h 53m 30s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2372, 2373). The full 1.6° x 1.6° (1891 x 1938 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 15th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Unprocessed jpg image.
Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Unprocessed jpg image.

Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).
Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).

Vespera II with CLS Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.5° x 2.6°. Total of 2632 stacked images (07h 18m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2631, 2632). The full 2.6° x 2.6° (3833 x 3855 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 11th pass when the observation was paused. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Lots of stars in this region of the sky.

Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Unprocessed jpg image.
Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Unprocessed jpg image.

Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Image processed with Capture One (levels) and Topaz AI (noise reduction).
Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Image processed with Capture One (levels) and Topaz AI (noise reduction).

Vespera Pro with Dual Band Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2629 stacked images (07h 18m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2628, 2629). The full 1.6° x 1.6° (3559 x 3543 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 16th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Unprocessed JPG image.
Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Unprocessed JPG image.

Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Image processed with Capture One and Topaz AI (noise reduction).
Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Image processed with Capture One and Topaz AI (noise reduction).

Rosette Nebula (NGC 2237) and Cluster (NGC 2244)

The Rosette Nebula and Cluster (NGC 22237, Caldwell 49, NGC 2244, Caldwell 50) is a bright emission nebula in the Monoceros region of the Milky Way Galaxy. I did the observations between 03:00 and 05:30 (astronomical dawn). The observations of the Jellyfish Nebula (IC 443), Horsehead Nebula (IC 434), and Flame Nebula (NGC 2024) were washed out due to the bright moon.

Vespera Classic with Dual Band Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera Classic telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 2.3° x 2.4°. Total of 2101 stacked images (05h 50m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2100, 2101). The full 2.3° x 2.4° (2811 x 2950 pixel) mosaic field was filled after 512 stacked images. The mosaic was in the 4th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the neb

Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter).
Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter).

Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)
Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Passengers with Dual Band Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera Passengers telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 2.4° x 2.4°. Total of 1747 stacked images (04h 51m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1756, 1747). The full 2.4° x 2.4° (2887 x 2851 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 8th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed jpg image.
Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed jpg image.

Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise).
Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise).

Vespera II with CLS Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.6° x 2.7°. Total of 2656 stacked images (07h 22m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2655, 2656). The full 2.6° x 2.7° (3854 x 3972 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 11th pass when the observation was paused. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Lots of stars in this region of the sky. The nebula is not as bright with the CLS filter vs. the Dual filter.

Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images.  Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed jpg image.
Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed jpg image.

Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images.  Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)
Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Pro with Dual Band Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 2.4° x 2.4°. Total of 2894 stacked images (07h 18m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2893, 2894). The full 2.4° x 2.4° (5304 x 5304 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 12th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Unprocessed jpg image.
Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Unprocessed jpg image.

Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction).
Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction).

Sunday (20-October-2024) — New Jersey

Comet C/2023 A3 (Tsuchinshan–ATLAS)

I found a spot in the far corner of my backyard with a view to the west where Comet C/2023 A3 (Tsuchinshan–ATLAS) was still high enough above the trees after dusk to be visible. The estimated magnitude of the comet was +4.5. To me barely visible to the eye, but easily captured by camera or Vespera telescope.

To observe a comet with the Vespera telescopes, you first need to determine the RA (right ascension) and Dec (declination) coordinates of the comet for your location at the time of the observation. I use Stellarium find this information. The RA/dec data is needed to create a manual observation target in the Singularity application that controls the Vespera telescopes.

The Vespera telescopes weigh about 5 kg (11 lbs) and could easily be carried to the far corner of my backyard and set up on heavy duty camera tripods. The only thing I needed to worry about was a doe that found a hole in my deer fence and was wandering around in the back yard. Once it was dark enough to initialize (automatically align and focus) the Vespera telescopes all I needed to do set it to look for the manual target and start acquiring and stacking images.

The comet was much brighter than the other stars in the field of view. The comet’s tail was longer than the field of view of the telescopes. Vespera Classic (1.6° x 0.9°) and Vespera Pro (1.6° x 1.6°). The jpg images were processed to increase the brightness (Capture One Pro) and reduce the noise (Topaz AI).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Image taken with a Hasselblad 907c camera and 25 mm f/2.5 lens (ISO 800, f/8, 32 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Image taken with a Hasselblad 907x camera and 25 mm f/2.5 lens (ISO 800, f/8, 32 sec). Processed jpg image with Capture One and Topaz AI (denoise). Cropped to 8k x 8k (~60° field of view).
Autumn in New Jersey. Image taken with a Hasselblad 907c camera and 25 mm f/2.5 lens
Comet C/2023 A3 (Tsuchinshan–ATLAS). Image taken with a Hasselblad 907x camera and 25 mm f/2.5 lens (ISO 800, f/8, 32 sec). Processed jpg image with Capture One and Topaz AI (denoise). Cropped to 2400 x 2400 pixels (~ 18° field of view).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).

Friday (15-September-2023) — New Jersey

Backyard Day and Nighttime Sky Over New Jersey.

With the sky clear, I set up the Vespera Observation station with a solar filter during the day to observe sunspots. When I reviewed the images, I found one with a silhouette of a bird (Turkey Vulture?) flying in front of the sun. In the past I have capture images of planes, and sometimes satellites transiting the solar disk. While on Semester at Sea voyages, we had an informal contest to capture images of ships at the horizon passing in front of the sun at sunset (or sunrise).

Silhouette of bird flying in front of the Sun. (David J Mathre)
Silhouette of bird flying in front of the Sun. Image taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 1/4000 sec) fitted with a solar filter. Image processed with Topaz Photo AI. (David J Mathre)

Once it got dark out, I set up both the Vespera and Stellina observation stations to observe deep sky objects (galaxies, nebulae, star clusters). The Vespera was fitted with a dual band (H-alpha and O-III) filter. The Vespera captured images of NGC 6960: Western Veil Nebula, Witch’s Broom Nebula; IC 1396: Elephant’s Trunk Nebula; and IC 1795: Fish Head Nebula. The final one didn’t go to completion due to condensation on the lens.

NGC 6960: Western Veil Nebula, Witch's Broom Nebula. (David J Mathre)
NGC 6960: Western Veil Nebula, Witch’s Broom Nebula. Composite of 407 10 second exposures taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 4070 sec) using a dual band (H-alpha, O-III) filter. Image processed with Topaz Photo AI. (David J Mathre)

IC 1396 Emission Nebula (Elephant's Trunk Nebula). (David J Mathre)
IC 1396 Emission Nebula (Elephant’s Trunk Nebula). Composite of 623 10 second exposures taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 6230 sec) using a dual band (H-alpha, O-III) filter. Image processed with Topaz Photo AI. (David J Mathre)

IC 1795 Emission Nebula (Fish Head Nebula). (David J Mathre)
IC 1795 Emission Nebula (Fish Head Nebula). Composite of 175 10 second exposures taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 1750 sec) using a dual band (H-alpha, O-III) filter. Image processed with Topaz Photo AI. Note: Observation did not run to completion. (David J Mathre)

For the Stellina, I used the “Plan My Night” option to collect images of Messier 29 Open Cluster (M29, NGC 6913); NGC 6946 (Fireworks Galaxy); NGC 7331 Spiral Galaxy (Caldwel 30); Messier 31 Spiral Galaxy (Andromeda Galaxy, NGC 224); Messier 74 Spiral Galaxy (M74, NGC 628, Phantom Galaxy); Messier 110 Dwarf Elliptical Galaxy (M10, NGC 205); IC 342: The Hidden Galaxy in Camelopardalis. The system was set to collect images for about an hour for each object. For some reason, the telescope did not automatically close at the end of the collection. I am not sure if the external Anker Power USB power supply ran out. The lens was covered with dew. The Stellina system has a lens heater that is supposed to prevent condensation so may be the reason the power bank ran out. The Vespera system does not have the lens heater option installed.

Messier 29 Open Cluster (M29, NGC 6913). (David J Mathre)
Messier 29 Open Cluster (M29, NGC 6913). Composite of 131 exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 1310 sec). Image processed with Topaz Photo AI. (David J Mathre)

NGC 6946 (Fireworks Galaxy). (David J Mathre)
NGC 6946 (Fireworks Galaxy). Composite of 220 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 2200 sec). Image processed with Topaz Photo AI. (David J Mathre)

NGC 7331 Spiral Galaxy (Caldwel 30). (David J Mathre)
NGC 7331 Spiral Galaxy (Caldwel 30). Composite of 143 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 1430 sec). Image processed with Topaz Photo AI. (David J Mathre)

Messier 31 Spiral Galaxy (Andromeda Galaxy, NGC 224). (David J Mathre)
Messier 31 Spiral Galaxy (Andromeda Galaxy, NGC 224). Composite of 601 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 6150 sec). Image processed with Topaz Photo AI. (David J Mathre)

Messier 74 Spiral Galaxy (M74, NGC 628, Phantom Galaxy). (David J Mathre)
Messier 74 Spiral Galaxy (M74, NGC 628, Phantom Galaxy). Composite of 203 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 2030 sec). Image processed with Topaz Photo AI. (David J Mathre)

Messier 110 Dwarf Elliptical Galaxy (M10, NGC 205). (David J Mathre)
Messier 110 Dwarf Elliptical Galaxy (M10, NGC 205). Composite of 367 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 3670 sec). Image processed with Topaz Photo AI. Located near the Andromeda galaxy (bottom right corner). (David J Mathre)

IC 342: The Hidden Galaxy in Camelopardalis. (David J Mathre)
IC 342: The Hidden Galaxy in Camelopardalis. Composite of 239 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 2390 sec). Image processed with Topaz Photo AI. (David J Mathre)

Daily Electric Energy Used (46.5 kWh) from Sense. Daily Solar Electric Energy Produced (51.7 kWh) from Sense. Sunny. Surplus of 5.2 kWh.

powered by Ambient Weather

Friday (03-February-2023) — New Jersey

Backyard Nighttime Sky Over New Jersey.

As a really cold mass of air moved in the night sky was very clear. Lots of stars visible even though the moon was nearly full. I moved both the Stellina and Vespera telescope/cameras to the back patio and allowed them to equilibrate to the cold temperature (14°F/-10°C). Both systems needed to have their software/firmware upgraded before being initialized. They were then programmed to collect images of Comet C/2022 E3 (ZTF). It appears that the boxier Stellina is more sensitive to wobbling in the wind. The system only accepted 33-50% of the images and even then there was some doubling/streaking of the stars. The Vespera with its curved surfaces is more aerodynamic and did not appear to be impacted by the wind. The software/firmware update improved the quality of the exported composite TIF images. Time-lapse videos were generated from the JPG images showing the movement of the comet relative to the stars. The battery for the Vespera gave up after about 5 hours, even though an external battery was attached due to the extreme cold. The Stellina does not have an internal battery. The external battery lasted a bit longer, allowing me to create a time-lapse video of the moon. You can definitely see when the wind was blowing resulting in some distorted moon images.


Stellina Deep Sky Observations. Comet C/2022 E3 (ZTF). TIF images processed with Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.


Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). TIF images processed with Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (100.0 kWh) from Sense. Daily Solar Electric Energy Produced (38.5 kWh) from Sense. Sunny but cold. Deficit of 61.5 kWh.


powered by Ambient Weather