Wednesday (01-February-2023) — New Jersey

Backyard Nighttime Sky Over New Jersey.

I just arrived back home from a short trip to Florida and the night sky was clear. Comet C/2022 E3 (ZTF) is now visible in the early evening sky. Both the Stellina and Vespera telescope/cameras were used to capture images. The telescopes automatically track the motion of the stars in the sky while taking 10 second images. During the time of the observations (15-63 minutes), the comet is moving, creating a tail in the image. This motion can be viewed in the time-lapse video.


Stellina and Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Stellina and Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (79.5 kWh) from Sense. Daily Solar Electric Energy Produced (34.6 kWh) from Sense. Sun and clouds. Deficit of 44.9 kWh.

powered by Ambient Weather

Friday (20-January-2023) — New Jersey

Backyard Nighttime Sky Over New Jersey.

After two days of cloudy skies, the sky cleared just long enough before dawn to capture images of Comet C/2022 E3 (ZTF). This time with both the Stellina and Vespera telescope/cameras. The comet is high enough above the horizon to the north-east before dawn to be viewed above my house from my patio. I use the Sky Live website to get the location of the comet, and then enter the numbers into the Singularity application. Within minutes, both the Stellina and Vespera had the comet centered and start taking images.


Stellina and Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (79.9 kWh) from Sense. Daily Solar Electric Energy Produced (23.1 kWh) from Sense. Sun and clouds. Deficit of 56.8 kWh.

powered by Ambient Weather

Wednesday (18-January-2022) — New Jersey

Backyard Nighttime Sky Over New Jersey.

The pre-dawn sky was clear with the green Comet C/2022 E3 (ZTF) high enough above the horizon to the northeast to be viewed from my patio using a Vespera telescope-camera.


Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.

During the day, I used the Vespera telescope fitted with a solar filter to view the many sunspots currently visible. For solar observations, the Vespera takes individual JPEG images which I put together as a short time-lapse video. There were periods of time that clouds got in the way.

I set up two cameras to record star trails. One pointing north (Nikon Z9) using a CamRanger II controller for long (300 sec) exposures. The other camera (Hallelblad X2D) pointing south. You can see the clouds coming and going.


Star and Jet trails looking south. Images taken with a Hasselblad X2D camera and 30 mm f/3.5 lens (ISO 64, 30 mm, f/8, 323 s). Images processed with Phocus and the composites created using PhotoShop (scripts, statistics, maximum). Individual images in the slideshow are available in my PhotoShelter Gallery.


Star and Jet trails looking north. Images taken with a Nikon Z9 camera, FTZ adapter, and 19 mm f/4 PC-E lens (ISO 64, 19 mm, f/8, 300 s). CamRanger II intervalometer used to control the camera (bulb, 5 min exposure). Images processed with Capture One Pro and the composites created using PhotoShop (scripts, statistics, maximum). Individual images in the slideshow are available in my PhotoShelter Gallery.

The sky was partially clear before midnight. The Stellina and Vespera telescope/cameras were set up to capture images of the North America Nebula (NGC 7000), Polaris (North Star), Rosette Nebula (NGC 2237), Satellite Cluster (NGC 2244), Cone Nebula/Christmas Tree Cluster (NGC 2264). The clouds interfered with several of the images. It appears that the observation stations automatically stop collecting and processing images at some point when the clouds become problematic.

For the following images, I processed the final JPG image with Topaz AI, followed by Capture One Pro. For the raw TIFF images, I needed to use Capture One Pro first, followed by Topaz AI. Follow the link to my PhotoShelter Gallery for larger views of the images.


Stellina and Vespera Deep Sky Observations. JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Stellina and Vespera Deep Sky Observations. TIF images processed with Capture One Pro followed by Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (80.0 kWh) from Sense. Daily Solar Electric Energy Produced (23.9 kWh) from Sense. Sun and clouds. Deficit of 56.1 kWh.

powered by Ambient Weather

Tuesday (17-January-2023) — New Jersey

Backyard Nighttime Sky Over New Jersey.

The sky cleared just long enough before dawn to capture images of Comet C/2022 E3 (ZTF). This time just with the Vespera telescope. The comet is high enough above the horizon to the north-east before dawn to be viewed above my house from my patio. I use the Sky Live website to get the location of the comet, and then enter the numbers into the Singularity application. Within minutes, both the Vespera had the comet centered and start taking images.


Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (99.7 kWh) from Sense. Daily Solar Electric Energy Produced (9.2 kWh) from Sense. Cloudy. Deficit of 90.5 kWh.

powered by Ambient Weather

Monday (16-January-2022) — New Jersey

Backyard Nighttime Sky Over New Jersey.

Comet C/2022 E3 (ZTF), although not visible to my human eye can be observed with the Stellina or Vespera telescopes. It is high enough above the horizon before dawn to be viewed above my house from the back patio. I use the Sky Live website to get the location of the comet, and then enter the numbers into the Singularity application. Within minutes, both the Stellina and Vespera systems have the comet centered and start taking images.

Comet (C/2022 E3, ZTF). (David J Mathre)
Comet (C/2022 E3, ZTF). Composite of 220 images taken with a Vespera Camera (200 mm, f/4, 10 sec exposures, 36m 40s total exposure). JPEG image processed with Topaz AI then Capture One Pro. (David J Mathre)
Comet (C/2022 E3, ZTF). (David J Mathre)
Comet (C/2022 E3, ZTF). Composite of 46 images taken with a Stellina Camera (400 mm, f/5, 10 sec exposures, 7m 40s total exposure). JPEG image processed with Topaz AI then Capture One Pro. (David J Mathre)

During the day, I used the Vespera telescope fitted with a solar filter to view the many sunspots currently visible. For solar observations, the Vespera takes individual JPEG images which I put together as a short time-lapse video.

The sky was mostly clear before midnight. Captured images of the Heart Nebula (IC 1805) and the Monkey Head Nebula (NGC 2174). Images from the Stellina were without any filter, and ones from the Vespera used a Dual Band (H-alpha, O III) filter. The filter helps bring out detail with images of nebulae.

For the following images, I processed the final JPG image with Topaz AI, followed by Capture One Pro. For the raw TIFF images, I needed to use Capture One Pro first, followed by Topaz AI. Follow the link to my PhotoShelter Gallery for larger views of the images. The nebulae images taken using the dual H-alpha, O-III filter are more vivid.


Stellina and Vespera Deep Sky Observations. JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Stellina and Vespera Deep Sky Observations. TIF images processed with Capture One Pro followed by Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

I also set up two cameras to record star trails. I like the ability of the Hasselblad X2D to take long exposures using the internal camera controls. With the Hasselblad, I used 323 sec (5m 23s) exposures. The Nikon Z9 is limited to 30 sec exposures without using an external shutter controller. The previous Nikon D810a did have the ability to take exposures longer than 30 sec. Clouds started coming in after 22:15.


Star and Jet trails looking south. Images taken with a Hasselblad X2D camera and 30 mm f/3.5 lens (ISO 64, 30 mm, f/8, 323 s). Images processed with Phocus and the composites created using PhotoShop (scripts, statistics, maximum). Individual images in the slideshow are available in my PhotoShelter Gallery.


Star and Jet trails looking north. Images taken with a Nikon Z9 camera, FTZ adapter, and 19 mm f/4 PC-E lens (ISO 200, 19 mm, f/5.6, 30 s). Images processed with Capture One Pro and the composites created using PhotoShop (scripts, statistics, maximum). Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (96.1 kWh) from Sense. Daily Solar Electric Energy Produced (35.6 kWh) from Sense. Sunny. Deficit of 60.5 kWh.

powered by Ambient Weather