Sunday (20-October-2024) — New Jersey

Comet C/2023 A3 (Tsuchinshan–ATLAS)

I found a spot in the far corner of my backyard with a view to the west where Comet C/2023 A3 (Tsuchinshan–ATLAS) was still high enough above the trees after dusk to be visible. The estimated magnitude of the comet was +4.5. To me barely visible to the eye, but easily captured by camera or Vespera telescope.

To observe a comet with the Vespera telescopes, you first need to determine the RA (right ascension) and Dec (declination) coordinates of the comet for your location at the time of the observation. I use Stellarium find this information. The RA/dec data is needed to create a manual observation target in the Singularity application that controls the Vespera telescopes.

The Vespera telescopes weigh about 5 kg (11 lbs) and could easily be carried to the far corner of my backyard and set up on heavy duty camera tripods. The only thing I needed to worry about was a doe that found a hole in my deer fence and was wandering around in the back yard. Once it was dark enough to initialize (automatically align and focus) the Vespera telescopes all I needed to do set it to look for the manual target and start acquiring and stacking images.

The comet was much brighter than the other stars in the field of view. The comet’s tail was longer than the field of view of the telescopes. Vespera Classic (1.6° x 0.9°) and Vespera Pro (1.6° x 1.6°). The jpg images were processed to increase the brightness (Capture One Pro) and reduce the noise (Topaz AI).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Image taken with a Hasselblad 907c camera and 25 mm f/2.5 lens (ISO 800, f/8, 32 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Image taken with a Hasselblad 907x camera and 25 mm f/2.5 lens (ISO 800, f/8, 32 sec). Processed jpg image with Capture One and Topaz AI (denoise). Cropped to 8k x 8k (~60° field of view).
Autumn in New Jersey. Image taken with a Hasselblad 907c camera and 25 mm f/2.5 lens
Comet C/2023 A3 (Tsuchinshan–ATLAS). Image taken with a Hasselblad 907x camera and 25 mm f/2.5 lens (ISO 800, f/8, 32 sec). Processed jpg image with Capture One and Topaz AI (denoise). Cropped to 2400 x 2400 pixels (~ 18° field of view).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).

Wednesday (01-February-2023) — New Jersey

Backyard Nighttime Sky Over New Jersey.

I just arrived back home from a short trip to Florida and the night sky was clear. Comet C/2022 E3 (ZTF) is now visible in the early evening sky. Both the Stellina and Vespera telescope/cameras were used to capture images. The telescopes automatically track the motion of the stars in the sky while taking 10 second images. During the time of the observations (15-63 minutes), the comet is moving, creating a tail in the image. This motion can be viewed in the time-lapse video.


Stellina and Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Stellina and Vespera Deep Sky Observations. Comet C/2022 E3 (ZTF). JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (79.5 kWh) from Sense. Daily Solar Electric Energy Produced (34.6 kWh) from Sense. Sun and clouds. Deficit of 44.9 kWh.

powered by Ambient Weather

Monday (16-January-2022) — New Jersey

Backyard Nighttime Sky Over New Jersey.

Comet C/2022 E3 (ZTF), although not visible to my human eye can be observed with the Stellina or Vespera telescopes. It is high enough above the horizon before dawn to be viewed above my house from the back patio. I use the Sky Live website to get the location of the comet, and then enter the numbers into the Singularity application. Within minutes, both the Stellina and Vespera systems have the comet centered and start taking images.

Comet (C/2022 E3, ZTF). (David J Mathre)
Comet (C/2022 E3, ZTF). Composite of 220 images taken with a Vespera Camera (200 mm, f/4, 10 sec exposures, 36m 40s total exposure). JPEG image processed with Topaz AI then Capture One Pro. (David J Mathre)

Comet (C/2022 E3, ZTF). (David J Mathre)
Comet (C/2022 E3, ZTF). Composite of 46 images taken with a Stellina Camera (400 mm, f/5, 10 sec exposures, 7m 40s total exposure). JPEG image processed with Topaz AI then Capture One Pro. (David J Mathre)

During the day, I used the Vespera telescope fitted with a solar filter to view the many sunspots currently visible. For solar observations, the Vespera takes individual JPEG images which I put together as a short time-lapse video.

The sky was mostly clear before midnight. Captured images of the Heart Nebula (IC 1805) and the Monkey Head Nebula (NGC 2174). Images from the Stellina were without any filter, and ones from the Vespera used a Dual Band (H-alpha, O III) filter. The filter helps bring out detail with images of nebulae.

For the following images, I processed the final JPG image with Topaz AI, followed by Capture One Pro. For the raw TIFF images, I needed to use Capture One Pro first, followed by Topaz AI. Follow the link to my PhotoShelter Gallery for larger views of the images. The nebulae images taken using the dual H-alpha, O-III filter are more vivid.


Stellina and Vespera Deep Sky Observations. JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Stellina and Vespera Deep Sky Observations. TIF images processed with Capture One Pro followed by Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

I also set up two cameras to record star trails. I like the ability of the Hasselblad X2D to take long exposures using the internal camera controls. With the Hasselblad, I used 323 sec (5m 23s) exposures. The Nikon Z9 is limited to 30 sec exposures without using an external shutter controller. The previous Nikon D810a did have the ability to take exposures longer than 30 sec. Clouds started coming in after 22:15.


Star and Jet trails looking south. Images taken with a Hasselblad X2D camera and 30 mm f/3.5 lens (ISO 64, 30 mm, f/8, 323 s). Images processed with Phocus and the composites created using PhotoShop (scripts, statistics, maximum). Individual images in the slideshow are available in my PhotoShelter Gallery.


Star and Jet trails looking north. Images taken with a Nikon Z9 camera, FTZ adapter, and 19 mm f/4 PC-E lens (ISO 200, 19 mm, f/5.6, 30 s). Images processed with Capture One Pro and the composites created using PhotoShop (scripts, statistics, maximum). Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (96.1 kWh) from Sense. Daily Solar Electric Energy Produced (35.6 kWh) from Sense. Sunny. Deficit of 60.5 kWh.

powered by Ambient Weather

Tuesday (20-December-2022) — New Jersey

Backyard Nighttime Sky Over New Jersey.

It was clear again overnight. I did three longer observations using the Vespera Observation Station. Crab Nebula (M1, 363 images), Orion Nebula (M42, 907 images). Pinwheel Galaxy (M101, 661 images). For the Orion Nebula observation, I tried the beta Mosaic mode to get a wider image. The sensor size for the Vespera captures a 1.6° x 0.9° field of view. With the Mosaic mode the field of view is up to 4x greater (3.2° x 1.8° = 8.2 Mpx). The longer observation times do provide sharper images with more detail and less noise.

For the following images, I processed the final JPG image with Topaz AI, followed by Capture One Pro. For the raw TIFF images, I needed to use Capture One Pro first, followed by Topaz AI.


Vespera Deep Sky Observations. JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Vespera Deep Sky Observations. TIF images processed with Capture One Pro followed by Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (95.7 kWh) from Sense. Daily Solar Electric Energy Produced (19.5 kWh) from Sense. Sun and clouds. Deficit of 76.2 kWh.

powered by Ambient Weather

Monday (19-December-2022) — New Jersey

Backyard Nighttime Sky Over New Jersey.

I spent my first night with the Vespera (automated deep sky camera) capturing images of several objects. I set the Vespera up on a tripod in my back patio which has a view of the sky southeast to southwest, and to the north elevations above the house. Both east and west are blocked by trees. The Vespera is controlled via WiFi by the Singularity app running on an android (or iOS) device. Unfortunately, there is not a Window or web-based app. Also, the WiFi uses an open (not secured) connection between the notepad and Vespera.  Once the WiFi connection is established the Singularity app controls the instrument. It takes 10-15 minutes to initialize the Vespera. During this time the camera points to the sky, determines its position and focuses the camera. After that it is just a matter of selecting the objects to view. The Singularity app has the location of several hundred objects (stars, clusters, nebulae, galaxies, and planets) pre-programed in its database along with recommendations for the length of image/data collection.

During the night I captured images of the Triangulum Galaxy (M33), Helix Nebula (NGC 7293), Pleiades Cluster (M45), Orion Nebula (M42), an open cluster (NGC 1502), Bode’s Galaxy (M81), Cigar Galaxy (M82), Polaris (North Star), Andromeda Galaxy (M31), a double cluster (NGC 884, NGC 869), Caroline’s Rose Cluster (NGC 7789), Rosette Nebula (NGC 2244), and the Seagull Nebula (IC 2177). I also had it view Jupiter; however, the disk is small, and I was not able to see Jupiter’s moons.

For most of the objects I did short 5-to-10-minute data collections just to get an idea of how the Vespera worked. This was shorter than the times recommended, but still provided decent images. The Vespera camera has a 200 mm focal length, f/4 aperture, and takes 10 second exposures. The camera uses a Sony IMX462 back-illuminated CMOS sensor (1920×1080) optimized for low light capture. The Vespera automatically processes (aligning and stacking) the images. Over time, the signal/noise ratio increases providing improved image quality. The default output from the Vespera is a JPG image every ~10 seconds (integrated stacked composite) displayed on the notepad screen. At the end of the observation the composite raw image can be saved as a TIFF file. The camera also has the ability to store individual raw images (FITS) that can be processed offline using more sophisticated software. The Vespera does not have a port (USB, ethernet) or memory card slot (SD, CF) to download the data collected by the onboard computer. The data needs to be downloaded by FTP via WiFi. The Vespera has 10 GB of onboard memory for storing images. You need to remember to remove/delete images after downloading to free up space for the next night of observations.

For the following images, I processed the final JPG image of the object with Topaz AI, followed by Capture One Pro. For the raw TIFF images, I needed to use Capture One Pro first, followed by Topaz AI.


Vespera Deep Sky Observations. JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Vespera Deep Sky Observations. TIF images processed with Capture One Pro followed by Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (95.7 kWh) from Sense. Daily Solar Electric Energy Produced (19.5 kWh) from Sense. Sun and clouds. Deficit of 76.2 kWh.


powered by Ambient Weather