Monday (18-November-2024) — New Jersey

Comet C/2023 A3 (Tsuchinshan–ATLAS)

The comet and tail keep getting smaller and fainter. The estimated magnitude of the comet was +8.5. I am only showing images from the Stellina telescope since the Vespera telescopes are fitted with filters for viewing emission nebulae.

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).

Singularity Multi-Night Observations

One of the new features with the Singularity software application used to operate the Vaonis telescopes is Multi-Night Observations. The mosaic image composite process is continued from the previous observation session to afford improved image quality. The software permits up to five different mosaic images to be continued for more than one night. At the end of each multi-night observation, the final image and the settings to continue the observation for the target is stored with the instrument as the starting point for the next multi-night observation. The settings include whether a filter is used (and would be required for subsequent multi-night observations). It is recommended that the object be between 25° and 75° during the multi-night observation.

Helix Nebula (NGC 7293)

The Helix Nebula is a planetary emission nebula located in the constellation Aquarius. It is relatively low (maximum about 28°) above the southern horizon early in the evening, so the first target for the night.

Stellina (no Filter)

Observation of the Helix Nebula (NGC 7293) over four nights using the Stellina telescope with no filter. The mosaic size for the observation was set to 1.1° x 1.1°. Total of 741 stacked images, 02h 03m 30s). I’ve included both an unprocessed jpg image and one that was processed (Capture One for brightness and contrast, Topaz AI to remove noise).

Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec). JPG image without additional processing.
Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec exposures). JPG image without additional processing.
Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec). Image processed with Topaz AI (noise reduction) and Capture One.
Helix Nebula (NGC 7293). Composite of 740 stacked images (02h 03m 30s). Stellina (400 mm, f/5, 10 sec exposures). Image processed with Topaz AI (noise reduction) and Capture One.
Vespera Classic with Dual Filter

Observation of the Helix Nebula (NGC 7293) over four nights using the Vespera Classic telescope with a Dual (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 1766 stacked images (04h 54m 20s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1765, 1766). The full 1.6° x 1.6° (1967 x 1936 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 6th pass when the observation was stopped for the night. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Compared with the processed image from the Stellina, this one is brighter due to the Dual filter and the larger number of stacked images.

Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4).  JPG image without additional processing
Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4). JPG image without additional processing

Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4).  Image processed with Topaz AI (noise) and Capture One.
Helix Nebula (NGC 7293). Composite of 1765 stacked 10 sec exp (04 h 54m 20s). Vespera Classic (200 mm, f/4). Image processed with Topaz AI (noise) and Capture One.

Vespera Passengers with Dual Band Filter

Observation of the Helix Nebula (NGC 7293) over four nights using the Vespera Passengers telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 1199 stacked images (03h 19m 50s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1198, 1199). The full 1.6° x 1.6° (1956 x 1934 pixel) mosaic field was filled after 32 stacked images. The mosaic was in the 8th pass when the observation was paused. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise).

Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). JPG image without additional processing
Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). JPG image without additional processing

Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). Image processed with Capture One (brightness) and Topaz AI (noise reduction)
Helix Nebula (NGC 7293). Composite of 1199 stacked images. Vespera Passengers (200 mm, f/4). Image processed with Capture One (brightness) and Topaz AI (noise reduction)

Vespera II with CLS Filter

Observation of the Helix Nebula (NGC 7293) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.5° x 2.6°. Total of 1446 stacked images (04h 01m 00s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1445, 1446). The full 2.5° x 2.6° (3791 x 3840 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 6th pass when the observation was paused. Even though there are more stacked images, the unprocessed jpg image from the Vespera-II telescope is not a bright as the ones from the Vespera Classic, or Vespera Passengers telescopes. This may be due to the different filters used (CLS vs Dual). The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise).

Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Unprocessed jpg image.
Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Unprocessed jpg image.

Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Image processed with Capture One (brightness) and Topaz AI (noise reduction)
Helix Nebula (NGC 7293). Composite of 1446 stacked images. Vespera II (250 mm, f/5, 10 sec exp). Image processed with Capture One (brightness) and Topaz AI (noise reduction)

Dumbbell Nebula (M27)

The Dumbbell Nebula (M27, NGC 6853) is a planetary nebula in the constellation Vulpecula. Vespera Pro was not able to locate/lock onto the Helix nebula, so I selected the Dumbbell nebula as an alternative multi-night target. On this date, it remains above 25° above the horizon until about 22:00.

Vespera Pro with Dual Band Filter

Observation of the Dumbell Nebula (M27) over two nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 801 stacked images (02h 13m 30s). The slideshow shows the image improve (increased brightness and contrast as well as decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 800, 801). The full 1.6° x 1.6° (3559 x 3571 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 6th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed around the nebula.

Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Unprocessed jpg image.
Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Unprocessed jpg image.

Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).
Dumbbell Nebula (M27). Vespera Pro (250 mm, f/5, 10 sec exp, Dual Band Filter). Composite of 801 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).

Crescent Nebula (NGC 6888)

The Crescent Nebula (NGC 6888, Caldwell 27, Sharpless 105) is an emission nebula in the constellation Cygnus. On this date, it remains above 25° above the horizon until about 22:00. I selected this as my second deep sky object for multi-night target for the night.

Stellina (no Filter)

Observation of the Crescent Nebula (NGC 6888) over four nights using the Stellina telescope with no filter. The mosaic size for the observation was set to 1.1° x 1.1°. Total of 1624 stacked images, 04h 30m 40s). I’ve included both an unprocessed jpg image and one that was processed (Capture One for brightness and contrast, Topaz AI to remove noise). In this section of the sky there are lots of stars. Even with the processing, it is difficult to clearly see the faint red nebula.

Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Image processed with Topaz AI (noise reduction) and Capture One.
Crescent Nebula (NGC 6888). Composite of 1624 stacked images (04h 30m 40s). Stellina (400 mm, f/5, 10 sec exp). Image processed with Topaz AI (noise reduction) and Capture One.

Vespera Classic with Dual Band Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera Classic telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2236 stacked images (06h 12m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2235, 2226). The full 1.6° x 1.6° (1900 x 1924 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 7th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed above the nebula.

Crescent Nebula (NGC 6888). Composite of x stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 2336 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of x stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Image processed with Capture One (levels) and Topaz AI (noise reduction)
Crescent Nebula (NGC 6888). Composite of 2336 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp). Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Passengers with Dual Band Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera Passengers telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2016 stacked images (05h 36m 00s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2015, 2016). The full 1.6° x 1.6° (1949 x 1938 pixel) mosaic field was filled after 32 stacked images. The mosaic was in the 14th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed around the nebula.

Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise)
Crescent Nebula (NGC 6888). Composite of 2016 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise)

Vespera II with CLS Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.5° x 2.6°. Total of 2168 stacked images (06h 01m 20s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2167, 2168). The full 2.5° x 2.6° (3694 x 3840 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 11th pass when the observation was paused. Even though there are more stacked images, the unprocessed jpg image from the Vespera-II telescope is not a bright as the ones from the Vespera Classic, or Vespera Passengers telescopes. This may be due to the different filters used (CLS vs Dual). The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Lots of stars in this region of the sky.

Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed JPG image.
Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed JPG image.

Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Processed with Capture One (levels) and Topaz AI (noise reduction).
Crescent Nebula (NGC 6888). Composite of 2168 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Processed with Capture One (levels) and Topaz AI (noise reduction).

Vespera Pro with Dual Band Filter

Observation of the Crescent Nebula (NGC 6888) over four nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2638 stacked images (07h 19m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2637, 2638). The full 1.6° x 1.6° (3559 x 3543 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 17th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula. Additionally, some faint red areas can be observed around the nebula.

Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Unprocessed JPG image.
Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Unprocessed JPG image.

Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)
Crescent Nebula (NGC 6888). Vespera Pro (250 mm, f/5, 10 sec exp, Dual band filter). Composite of 2638 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)

Waning Gibbous Moon

The waning gibbous moon is 89% illuminated. For the remainder of the night the Stellina telescope recorded images of the moon that were used to create the following time-lapse video. I did a quick review of the images and didn’t see any object passing in front of the moon. Let me know if you see something. The telescope takes ~ 40 images/minute. The time-lapse video was created using Photoshop (720p, 30fps)

Packman Nebula (NGC 281)

The Packman Nebula (NGC 281, IC 11 or Sh2-184) is a bright emission nebula in the Cassiopea constellation and is part of the Milky Way.

Vespera Classic with Dual Band Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera Classic telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2534 stacked images (07h 02m 20s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2533, 2534). The full 1.6° x 1.6° (1924 x 1972 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 8th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Unprocessed jpg image.
Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Unprocessed jpg image.

Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)
Packman Nebula (NGC 281). Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2534 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Passengers with Dual Band Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera Passengers telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2373 stacked images (06h 53m 30s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2372, 2373). The full 1.6° x 1.6° (1891 x 1938 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 15th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Unprocessed jpg image.
Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Unprocessed jpg image.

Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).
Packman Nebula (NGC 281). Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Composite of 2373 stacked images. Image processed with Capture One (levels) and Topaz AI (noise reduction).

Vespera II with CLS Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.5° x 2.6°. Total of 2632 stacked images (07h 18m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2631, 2632). The full 2.6° x 2.6° (3833 x 3855 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 11th pass when the observation was paused. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Lots of stars in this region of the sky.

Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Unprocessed jpg image.
Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Unprocessed jpg image.

Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Image processed with Capture One (levels) and Topaz AI (noise reduction).
Packman Nebula (NGC 281). Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Composite of 2632 stacked mages. Image processed with Capture One (levels) and Topaz AI (noise reduction).

Vespera Pro with Dual Band Filter

Observation of the Packman Nebula (NGC 281) over four nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 1.6° x 1.6°. Total of 2629 stacked images (07h 18m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2628, 2629). The full 1.6° x 1.6° (3559 x 3543 pixel) mosaic field was filled after 64 stacked images. The mosaic was in the 16th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Unprocessed JPG image.
Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Unprocessed JPG image.

Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Image processed with Capture One and Topaz AI (noise reduction).
Packman Nebula (NGC 281). Vespera Pro (250 mm, f/5, 10 sec exp, dual band filter). Composite of 2629 stacked images. Image processed with Capture One and Topaz AI (noise reduction).

Rosette Nebula (NGC 2237) and Cluster (NGC 2244)

The Rosette Nebula and Cluster (NGC 22237, Caldwell 49, NGC 2244, Caldwell 50) is a bright emission nebula in the Monoceros region of the Milky Way Galaxy. I did the observations between 03:00 and 05:30 (astronomical dawn). The observations of the Jellyfish Nebula (IC 443), Horsehead Nebula (IC 434), and Flame Nebula (NGC 2024) were washed out due to the bright moon.

Vespera Classic with Dual Band Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera Classic telescope with a Dual band (H-α, O-III) filter. The mosaic size for the observation was set to 2.3° x 2.4°. Total of 2101 stacked images (05h 50m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2100, 2101). The full 2.3° x 2.4° (2811 x 2950 pixel) mosaic field was filled after 512 stacked images. The mosaic was in the 4th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the neb

Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter).
Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter).

Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)
Rosette Nebula (NGC 2237, NGC 2244) Composite of 2101 stacked images. Vespera Classic (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Passengers with Dual Band Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera Passengers telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 2.4° x 2.4°. Total of 1747 stacked images (04h 51m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1756, 1747). The full 2.4° x 2.4° (2887 x 2851 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 8th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed jpg image.
Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Unprocessed jpg image.

Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise).
Rosette Nebula (NGC 2237, 2244). Composite of 1747 stacked images. Vespera Passengers (200 mm, f/4, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (denoise).

Vespera II with CLS Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera II telescope with a CLS (city light suppression) filter. The mosaic size for the observation was set to 2.6° x 2.7°. Total of 2656 stacked images (07h 22m 40s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2655, 2656). The full 2.6° x 2.7° (3854 x 3972 pixel) mosaic field was filled after 256 stacked images. The mosaic was in the 11th pass when the observation was paused. The image after the slideshow was processed (Capture One for brightness and contrast, Topaz AI to remove noise). Lots of stars in this region of the sky. The nebula is not as bright with the CLS filter vs. the Dual filter.

Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images.  Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed jpg image.
Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Unprocessed jpg image.

Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images.  Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)
Rosette Nebula (NGC 2237, NGC 2244). Composite of 2656 stacked images. Vespera II (250 mm, f/5, 10 sec exp, CLS filter). Image processed with Capture One (levels) and Topaz AI (noise reduction)

Vespera Pro with Dual Band Filter

Observation of the Rosette Nebula (NGC 2237) and Cluster (NGC 2244) over four nights using the Vespera Pro telescope with a Dual Band (H-α, O-III) filter. The mosaic size for the observation was set to 2.4° x 2.4°. Total of 2894 stacked images (07h 18m 10s). The slideshow shows the image improve (increased brightness, decreased sensor noise) as the number of stacked images increases (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 2893, 2894). The full 2.4° x 2.4° (5304 x 5304 pixel) mosaic field was filled after 128 stacked images. The mosaic was in the 12th pass when the observation was paused. The image has been processed using Capture One for brightness and contrast adjustments, and Topaz AI for noise reduction. The use of a dual-band filter significantly enhances the visibility of the nebula.

Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Unprocessed jpg image.
Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Unprocessed jpg image.

Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction).
Rosette Nebula (NGC2237, NGC 2244). Composite of 2894 stacked images. Vespera Pro (250 mm, f/5, 10 sec exp, dual-band filter). Image processed with Capture One (levels) and Topaz AI (noise reduction).

Monday (19-December-2022) — New Jersey

Backyard Nighttime Sky Over New Jersey.

I spent my first night with the Vespera (automated deep sky camera) capturing images of several objects. I set the Vespera up on a tripod in my back patio which has a view of the sky southeast to southwest, and to the north elevations above the house. Both east and west are blocked by trees. The Vespera is controlled via WiFi by the Singularity app running on an android (or iOS) device. Unfortunately, there is not a Window or web-based app. Also, the WiFi uses an open (not secured) connection between the notepad and Vespera.  Once the WiFi connection is established the Singularity app controls the instrument. It takes 10-15 minutes to initialize the Vespera. During this time the camera points to the sky, determines its position and focuses the camera. After that it is just a matter of selecting the objects to view. The Singularity app has the location of several hundred objects (stars, clusters, nebulae, galaxies, and planets) pre-programed in its database along with recommendations for the length of image/data collection.

During the night I captured images of the Triangulum Galaxy (M33), Helix Nebula (NGC 7293), Pleiades Cluster (M45), Orion Nebula (M42), an open cluster (NGC 1502), Bode’s Galaxy (M81), Cigar Galaxy (M82), Polaris (North Star), Andromeda Galaxy (M31), a double cluster (NGC 884, NGC 869), Caroline’s Rose Cluster (NGC 7789), Rosette Nebula (NGC 2244), and the Seagull Nebula (IC 2177). I also had it view Jupiter; however, the disk is small, and I was not able to see Jupiter’s moons.

For most of the objects I did short 5-to-10-minute data collections just to get an idea of how the Vespera worked. This was shorter than the times recommended, but still provided decent images. The Vespera camera has a 200 mm focal length, f/4 aperture, and takes 10 second exposures. The camera uses a Sony IMX462 back-illuminated CMOS sensor (1920×1080) optimized for low light capture. The Vespera automatically processes (aligning and stacking) the images. Over time, the signal/noise ratio increases providing improved image quality. The default output from the Vespera is a JPG image every ~10 seconds (integrated stacked composite) displayed on the notepad screen. At the end of the observation the composite raw image can be saved as a TIFF file. The camera also has the ability to store individual raw images (FITS) that can be processed offline using more sophisticated software. The Vespera does not have a port (USB, ethernet) or memory card slot (SD, CF) to download the data collected by the onboard computer. The data needs to be downloaded by FTP via WiFi. The Vespera has 10 GB of onboard memory for storing images. You need to remember to remove/delete images after downloading to free up space for the next night of observations.

For the following images, I processed the final JPG image of the object with Topaz AI, followed by Capture One Pro. For the raw TIFF images, I needed to use Capture One Pro first, followed by Topaz AI.


Vespera Deep Sky Observations. JPG images processed with Topaz AI, followed by Capture One Pro. Individual images in the slideshow are available in my PhotoShelter Gallery.


Vespera Deep Sky Observations. TIF images processed with Capture One Pro followed by Topaz AI. Individual images in the slideshow are available in my PhotoShelter Gallery.

Daily Electric Energy Used (95.7 kWh) from Sense. Daily Solar Electric Energy Produced (19.5 kWh) from Sense. Sun and clouds. Deficit of 76.2 kWh.


powered by Ambient Weather