Sunday (27-October-2024) — New Jersey

Comet C/2023 A3 (Tsuchinshan–ATLAS) over New Jersey

Another clear night. It has been very dry this fall with few clouds. All five telescopes were out tonight. First viewing the comet. The Vespera II telescope was fitted with a CLS (city light suppression) filter causing the tint to the image. The length of the comet tail can be estimated based on the field of view for the telescope’s digital sensors. Stellina (1.0° x 0.7°), Vespera Classic (1.6° x 0.9°), Vespera Passengers (2.4° x 1.8°), Vespera II (2.5° x 1.4°), and Vespera Pro (1.6° x 1.6°). The jpg images were processed to increase the brightness (Capture One Pro) and reduce the noise (Topaz AI).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Passengers Telescope (200 mm, f/4, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Passengers Telescope (200 mm, f/4, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera II Telescope (250 mm, f/5, 30 x 10 sec) using a CLS (city light suppression) filter.
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera II Telescope (250 mm, f/5, 30 x 10 sec) using a CLS (city light suppression) filter.

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).

After the comet dropped below the tree line, the telescopes were set to continue or start multi-night mosaic observations of the Veil Nebulae (NGC 6960 and NGC 6992), the Heart and Fish Head Nebulae (IC 1805 and IC 1795), and the Horse Head and Flame Nebulae (IC 434 and NGC 2024). Three of the telescopes Vespera Classic, Vespera Passenger, and Vespera Pro) were fitted with a dual narrowband interference Hα/OIII (hydrogen alpha/oxygen III) filter. The CLS filter remained on the Vespera II telescope, and no filter was used on the Stellina telescope.

Friday (11-October-2024) — New Jersey

Northern Lights Display Visible in New Jersey

On Wednesday, Sunspot AR3848 sent a powerful solar flare directly toward earth. Based on the intensity and length of the coronal mass ejections (CME), NOAA and NASA forecasted that it could cause a severe G-4 class geomagnetic storm, with the possibility of auroras being visible further south than usual. The CME arrived on Thursday generating multiple alerts.

I went outside a little after 7 PM to possibly set up a camera to capture the Northern Lights. I don’t have a good view of the horizon to the north and hoped to see something above the trees. I wasn’t expecting anything this early as it was just dark out. To my amazement the sky looking north was bright red, and when I looked to the east and then south saw the typical aurora green. The display was everywhere, even straight up. It was much brighter than I expected, easily visible to the eye, not just with a digital camera. I wasn’t sure which direction to point the camera. I ended up setting up several cameras with wide angle lenses pointing different directions, including one with a fisheye lens with a 180° view pointing straight up. Each camera was set to take images every 30 seconds (30 second exposure, f/8, ISO 1600). Even though I missed some of the initial brightest display, I left the cameras out for several more hours. They did come back several times. I used the images to create the following time lapse videos.

View Looking North

Camera 1: Northeast (82° Field of View). 19:19-20:21

View Looking East

Camera 2: East (92° Field of View). 19:30-03:00

 

View Looking Up

Camera 3: Up (180° Field of View). 19:48-22:36

View Looking NorthWest

Camera 4: Northwest (104° Field of View). 20:00-01:36

View Looking North

Camera 1: Northeast (75° Field of View). 20:24-03:00

View Looking North

Camera 5: North (114° Field of View). 22:05-04:49

View Looking NorthEast

Camera 6: Northeast (84° Field of View). 22:17-01:09

Individual Images

Thursday (27-June-2024) — New Jersey

Independence Day Fireworks

Montgomery Township typically celebrates Independence Day with fireworks several days before the 4th of July. There was some grumbling that the fireworks overlapped the debate. The fireworks were scheduled a long time before the debate. I live near a great location that overlooks the high school where the township holds the Independence Day celebration. It is away from the crowds. I got there just before sunset. One car arrived before me but there was still plenty of space to set up the tripods and cameras. Last year, one camera wasn’t in focus so I spent more time get all of the cameras set up, framed and focused. Confirmed that they all memory cards and full batteries. Also, since the cameras were all on tripods, I made sure that the “vibration reduction/stabilization” was turned off. As it got dark a few fireflies were visible. I set the cameras up as follows: Base ISO (50, 64, or 160), f/11, 8 second exposure. The fireworks started just before 21:25. It took a little bit of time to confirm the framing, focus, and to start the interval timers.

Individual images in the slideshow are available in my PhotoShelter Gallery.

Individual images in the slideshow are available in my PhotoShelter Gallery.

Individual images in the slideshow are available in my PhotoShelter Gallery.

Individual images in the slideshow are available in my PhotoShelter Gallery.

Individual images in the slideshow are available in my PhotoShelter Gallery.

Solar Energy Monitor

I use a Sense Home Energy Monitor to record my daily electric energy used (78.7 kWh) and daily solar electric energy produced (71.1 kWh). Mostly sunny and hot with a Water Furnace geothermal system cooling the house. Deficit of 7.6 kWh for the day.

Current Weather

powered by Ambient Weather

Friday (15-September-2023) — New Jersey

Backyard Day and Nighttime Sky Over New Jersey.

With the sky clear, I set up the Vespera Observation station with a solar filter during the day to observe sunspots. When I reviewed the images, I found one with a silhouette of a bird (Turkey Vulture?) flying in front of the sun. In the past I have capture images of planes, and sometimes satellites transiting the solar disk. While on Semester at Sea voyages, we had an informal contest to capture images of ships at the horizon passing in front of the sun at sunset (or sunrise).

Silhouette of bird flying in front of the Sun. (David J Mathre)
Silhouette of bird flying in front of the Sun. Image taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 1/4000 sec) fitted with a solar filter. Image processed with Topaz Photo AI. (David J Mathre)

Once it got dark out, I set up both the Vespera and Stellina observation stations to observe deep sky objects (galaxies, nebulae, star clusters). The Vespera was fitted with a dual band (H-alpha and O-III) filter. The Vespera captured images of NGC 6960: Western Veil Nebula, Witch’s Broom Nebula; IC 1396: Elephant’s Trunk Nebula; and IC 1795: Fish Head Nebula. The final one didn’t go to completion due to condensation on the lens.

NGC 6960: Western Veil Nebula, Witch's Broom Nebula. (David J Mathre)
NGC 6960: Western Veil Nebula, Witch’s Broom Nebula. Composite of 407 10 second exposures taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 4070 sec) using a dual band (H-alpha, O-III) filter. Image processed with Topaz Photo AI. (David J Mathre)

IC 1396 Emission Nebula (Elephant's Trunk Nebula). (David J Mathre)
IC 1396 Emission Nebula (Elephant’s Trunk Nebula). Composite of 623 10 second exposures taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 6230 sec) using a dual band (H-alpha, O-III) filter. Image processed with Topaz Photo AI. (David J Mathre)

IC 1795 Emission Nebula (Fish Head Nebula). (David J Mathre)
IC 1795 Emission Nebula (Fish Head Nebula). Composite of 175 10 second exposures taken with a Vespera Observation Station (50 mm lens, 200 mm focal length, f/4, 1750 sec) using a dual band (H-alpha, O-III) filter. Image processed with Topaz Photo AI. Note: Observation did not run to completion. (David J Mathre)

For the Stellina, I used the “Plan My Night” option to collect images of Messier 29 Open Cluster (M29, NGC 6913); NGC 6946 (Fireworks Galaxy); NGC 7331 Spiral Galaxy (Caldwel 30); Messier 31 Spiral Galaxy (Andromeda Galaxy, NGC 224); Messier 74 Spiral Galaxy (M74, NGC 628, Phantom Galaxy); Messier 110 Dwarf Elliptical Galaxy (M10, NGC 205); IC 342: The Hidden Galaxy in Camelopardalis. The system was set to collect images for about an hour for each object. For some reason, the telescope did not automatically close at the end of the collection. I am not sure if the external Anker Power USB power supply ran out. The lens was covered with dew. The Stellina system has a lens heater that is supposed to prevent condensation so may be the reason the power bank ran out. The Vespera system does not have the lens heater option installed.

Messier 29 Open Cluster (M29, NGC 6913). (David J Mathre)
Messier 29 Open Cluster (M29, NGC 6913). Composite of 131 exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 1310 sec). Image processed with Topaz Photo AI. (David J Mathre)

NGC 6946 (Fireworks Galaxy). (David J Mathre)
NGC 6946 (Fireworks Galaxy). Composite of 220 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 2200 sec). Image processed with Topaz Photo AI. (David J Mathre)

NGC 7331 Spiral Galaxy (Caldwel 30). (David J Mathre)
NGC 7331 Spiral Galaxy (Caldwel 30). Composite of 143 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 1430 sec). Image processed with Topaz Photo AI. (David J Mathre)

Messier 31 Spiral Galaxy (Andromeda Galaxy, NGC 224). (David J Mathre)
Messier 31 Spiral Galaxy (Andromeda Galaxy, NGC 224). Composite of 601 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 6150 sec). Image processed with Topaz Photo AI. (David J Mathre)

Messier 74 Spiral Galaxy (M74, NGC 628, Phantom Galaxy). (David J Mathre)
Messier 74 Spiral Galaxy (M74, NGC 628, Phantom Galaxy). Composite of 203 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 2030 sec). Image processed with Topaz Photo AI. (David J Mathre)

Messier 110 Dwarf Elliptical Galaxy (M10, NGC 205). (David J Mathre)
Messier 110 Dwarf Elliptical Galaxy (M10, NGC 205). Composite of 367 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 3670 sec). Image processed with Topaz Photo AI. Located near the Andromeda galaxy (bottom right corner). (David J Mathre)

IC 342: The Hidden Galaxy in Camelopardalis. (David J Mathre)
IC 342: The Hidden Galaxy in Camelopardalis. Composite of 239 10 second exposures taken with a Stellina Observation Station (80 mm lens, 400 mm focal length, f/5, 2390 sec). Image processed with Topaz Photo AI. (David J Mathre)

Daily Electric Energy Used (46.5 kWh) from Sense. Daily Solar Electric Energy Produced (51.7 kWh) from Sense. Sunny. Surplus of 5.2 kWh.

powered by Ambient Weather

29-June-2023 (Thursday) — New Jersey

Independence Day Fireworks

Montgomery Township typically celebrates Independence Day with fireworks several days before the 4th of July. Last year was the first fireworks display for a couple of years due to Covid-19. I live near a great location that overlooks the high school where the township holds the fireworks celebration. Actually, I have been using this spot for over 30 years to watch the fireworks. I got there just before sunset. The sky was hazy with smoke from the Canadian forest fires. A couple of cars arrived before me, but there was still plenty of space to park and to set up three cameras on tripods. The moon was visible but dimmed somewhat due to the haze. As it got dark a few fireflies were visible, but nowhere near as many as last year. I set the cameras up as follows: Base ISO (50 or 64), f/11, 8 second exposure. The fireworks started just before 21:30. I was a bit slow getting all of the cameras focused and starting the cameras interval timer to automatically take images until the show was over. Unfortunately, with one camera the focus wasn’t quite right. The other two were in focus. Images below.


Images taken with a Leica SL2 camera and 90-280 mm f/2.8-4 lens (ISO 50, 280 mm, f/11, 8 sec). Individual images in the slideshow are available in my PhotoShelter Gallery.


Images taken with a Nikon Z9 camera and 105 mm f/2.8 macro lens (ISO 64, 105 mm, f/11, 8 sec). Individual images in the slideshow are available in my PhotoShelter Gallery.

Has anyone other than the folks trying to log onto my WordPress account noticed that I haven’t posted anything since February? It seems there have been hundreds of daily brute force attempts to guess my username and password.