Wednesday (30-October-2024) — New Jersey

Sun and Sunspots.

Even though it didn’t rain Tuesday night, the sky was too overcast for any observations of the comet (or any other objects). Today it was clear and sunny most of the day with some high-level clouds appearing towards evening. During the day, the Stellina telescope was fitted with a solar filter to observe the sun and sunspots. The images were used to create a time-lapse video.

Comet C/2023 A3 (Tsuchinshan–ATLAS)

I wasn’t sure if it would clear up again in time for the telescopes to observe the comet. Whether doing single observations or automated observation plans, initialization of the Stellina and Vespera telescopes require clear enough sky to see some stars to run the automated initialization routine (sky alignment and focus).

My workflow for doing observations of the comet goes as follows. First, I use the Stellarium software package to look up the RA (right ascension) and Dec (declination) data for Comet C/2023 A3 for my location and time of the observation (19:00 to 20:30). The RA/dec data is used to create manual observation targets in the Vaonis Singularity application. The manual observation targets are then used to create an observation plan. Since the comet is moving relative to stars, I set up a sequence of 15-minute observations from the point it is dark enough for the telescopes to initialize until the comet falls behind the trees toward the western horizon (~19:00 to 20:30). The observation plan is saved and uploaded to the telescope.

Once the plan is started the device does not need to remain connected to the telescope. The telescope waits until it is dark enough to initialize, then runs the observation plan. The observation data is collected and stored in temporary memory within the telescope. When the observation plan is complete (and before the sun comes up) the telescope closes and shuts down.

As long as the device running the Singularity application is connected to the internet, the manual targets and observation plans are stored in the cloud (within your Singularity account). I make use of this so I can share and run the same manual targets and observation plans on multiple Stellina and Vespera telescopes. Note that you need share the information before making the ad hock WiFi connection between the device running Singularity and the telescope. (Note: I use separate devices for each telescope).

I set up the telescopes and started the observation plan, still not sure if the sky would clear. After dinner when I checked the telescopes (~20:00), four out of five initialized and started observations of the comet even though there still were some clouds. During an observation, the telescopes only saves and stacks images when the view is not obstructed. So, in this case when the comet was blocked by clouds the telescope stopped collecting images until the sky was clear again. I am not sure why the Vespera Passengers telescope didn’t initialize. The comet is getting fainter, and the tail shorter.

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Stellina Telescope (400 mm, f/5, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera Classic Telescope (200 mm, f/4, 30 x 10 sec).

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera II Telescope (250 mm, f/5, 30 x 10 sec) using a CLS (city light suppression) filter.
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera II Telescope (250 mm, f/5, 30 x 10 sec) using a CLS (city light suppression) filter.

Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).
Comet C/2023 A3 (Tsuchinshan–ATLAS). Composite of 30 images taken with a Vaonis Vespera-Pro Telescope (250 mm, f/5, 30 x 10 sec).

After the comet dropped below the tree line, the telescopes were set to continue or start multi-night mosaic observations of the Veil Nebulae (NGC 6960 and NGC 6992), the Heart and Fish head Nebulae (IC 1805 and IC 1795), and the Horse Head and Flame Nebulae (IC 434 and NGC 2024). Three of the telescopes (Vespera Classic, Vespera Passenger, and Vespera Pro) were fitted with dual narrowband Hα/OIII (hydrogen alpha/oxygen III) interference filters. The CLS filter remained on the Vespera II telescope, and no filter was used on the Stellina telescope.

Author: David Mathre

I am a scientist by training (Eckerd College, BSc; Caltech, Ph.D.). I worked for 27 years as a Chemist in the Pharmaceutical Industry developing processes to manufacture medicines for human and animal health. I now spend my time as a photographer and world traveler. My interests include the natural world, wildlife, landscapes, sky, and seascapes, travel, and astrophotography. I look for unique ways of viewing the world and presenting my images. I have traveled to over 55 countries in six continents, often on Semester at Sea voyages. While at home in New Jersey, I spend time on home renovation and expansion of a wildflower garden/meadow.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.